
Example: Joe and Mike have a large box with hundreds of thousands of

tickets in it. Many years earlier, when they first gathered the tickets, they

found that the average of the box was 15 with an SD of 5.3. But over the

years tickets have been lost and other tickets have been added.

Joe believes that the average of the box is still 15 but Mike thinks that it

must have changed. They don’t want to look at all the tickets again, so

they agree to draw a simple random sample from the box and settle their

disagreement by looking at the sample average...

Data:

(*) Sample size: n = 400.

(*) Sample Average: x = 15.6.

(*) Sample standard deviation: s = 5.2.
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Mike: “15.6 6= 15... I’m right!”

Joe: “No... 15.6 − 15 = 0.6, that’s small: that difference can be explained

by chance error. The sample SD is 5.2!”

⇒ Why not use the original box SD of 5.3?

Mike: “Hmmm... No, wait! The sample SD is not the right estimate for the

chance error. We need to look at the SE !”

Joe: (grumbling) “Ok...”

SE =
SD(box)√

n
≈ SD(sample)√

n
=

5.2

20
= 0.26.

Mike smiles and Joe frowns... Why?

Because 15.6 − 15 = 0.6 > 2 × 0.26, and it is very unlikely to see a sample

average that is more than 2 SEs away from the expected value = box average.
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Confidence interval approach:

sample average± 2SE = 15.6± 0.52 = (15.08, 16.12).

There is a 95% chance that this interval contains the box average, but this

interval does not contain the number 15, so it seems unlikely that the box

average is 15.

In other words, if the box average is in fact 15, then there is only a 5%

chance that we produce a 95%-confidence interval that does not contain the

number 15.

There are 2 possible explanations for the observed results:

(1) The average of the box hasn’t changed: The observed difference is due to

chance error and Joe and Mike have just observed something very unlikely.

(2) The average of the box has changed.

Judgement call: If the ‘very unlikely’ is too unlikely, we choose the second

option.
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Tests of significance.

A test of significance is a statistical procedure for determining

the likelihood that the difference between an observed value and a

hypothetical ‘expected’ value is due to chance.

• The expected value comes from the Null Hypothesis — a hypothesis

about the composition of the box-model for the data. In many (but not

all) applications, researchers expect the null hypothesis to be false, and

are trying to collect statistical evidence to contradict it.

• The P-value of the test is the probability that the difference between

the observed value and the expected value is due to chance. The

P-value is also called the observed significance level of the test.

• Common terminology: If the P-value is between 1% and 5%, the

results are said to be significant, and if P is 1% or less, the results are

called highly significant. If P is small enough, the null hypothesis is

traditionally said to be rejected in favor of the alternative hypothesis

(the opposite of the Null Hypothesis).
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The steps:

1. Formulate the null and alternative hypotheses in terms of a box-model

and a parameter associated with this box model (e.g., the average of the

box or the percentage of 1 s in the box).

2. Choose an appropriate test statistic to measure the difference between

the observed value(s) and null-hypothetical expected value(s).

3. Collect the data, and calculate the value of the test statistic.

4. Find the significance level (p-value) — this is the probability that the dif-

ference between the value of the sample statistic and the null-hypothetical

expected value is due to chance error. The nature of the box-model

tells us how to do this.

Comment: In many scenarios, the test statistic follows the normal

distribution. These types of significance tests are called z-tests.

5. Summarize the results and draw any appropriate conclusions.

5



Example 1: Joe and Mike’s box.

(*) Box model: Their box; the parameter is the average of the box, µ.

(*) Hypotheses:

H0 : µ = 15 (this is the null hypothesis)

HA : µ 6= 15 (this is the alternative hypothesis).

(*) Test statistic: z0 =
x− µH0

SE

where x = sample average and SE =
box SD√

sample size
≈ sample SD√

sample size
.

(*) Data ⇒ observed value of test statistic: z ≈ 15.6− 15

0.26
≈ 2.3

(*) P-value: p = area under the normal curve outside the interval

(−2.3, 2.3), which is equal to 100%− 97.86% = 2.14%

Conclusion: The P -value is small enough (the results are statistically

significant) that we reject H0 and conclude that µ 6= 15.
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(*) The P -value is the probability of the test-statistic being as extreme as

or more extreme than the observed value.

(*) The region of the normal curve used to calculate the P -value comes from

the form of the alternate hypothesis. In this case HA : µ 6= 15, no direction

is specified: it is the size of |z| = |x−µ|/SE = 2.3 that determines the value

of p

(x− µ)/SE < −2.3 (x− µ)/SE > 2.3

This is an example of a two-tailed test.
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Example 2:

• The story: an investigator (Kathy) from a marketing research company

believes that the average number (µ) of connected devices per household

in Metropolis is greater than 4. To test this belief she begins with...

• Box model: each household in Metropolis corresponds to a ticket in a

box. The number on the ticket is the number of connected devices in

the household. Then she formulates the

• Null Hypothesis. H0 : µ = 4 (some people have H0 : µ ≤ 4)

and the

• Alternative hypothesis. HA : µ > 4.

Next she determines the...

• Test statistic. In this case, the test statistic is z =
sample average− µ

SE(avg)
,

where the value of µ is prescribed by H0.

(*) This test statistic will follow the normal distribution if the sample is a

simple random sample and the sample size is big enough.
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• Finally... She collects data and does the calculations.

Sample: A simple random sample of n = 1600 households.

Sample average: x̄ = 4.2.

Sample standard deviation: SD = 2.7.

• Test statistic: z =
4.2− 4

SE(avg)
≈ 4.2− 4

2.7/
√

1600
≈ 2.96.

• P-value:

p = area


2.96

p*

 ≈ 0.16%

Comment: The calculation of p is based on (i) the nature of the

test statistic (z follows the normal distribution) and (ii) the alternative

hypothesis which specifies µ > 4, so we only consider the area under the

normal curve to the right of z = 2.96.

• Conclusion: The result is highly significant, p < 1%. The likelihood is

tiny that the difference between the sample average and the H0-average

is due to chance error, so we reject the null hypothesis.

9



Comments:

• The point of a test of significance is to see how strong the (statistical)

evidence is in favor of the alternative hypothesis.

• If the investigator believes that the parameter is specifically higher

or lower than the null-hypothetical value, then a one-tailed test is

appropriate. This means that the P value is computed by looking at

the area either to the the right (or to the left) of z, as in the previous

example.

• If an investigator is testing whether the ‘truth’ is different than the null

hypothesis, but doesn’t have specific expectations as to higher or lower,

she should use a two-tailed test, as in the first example.

This means that to compute the P value from the observed value of the

test statistic z, we look at the area under the normal curve under both

tails: less than −|z| and greater than |z|.

? One-tailed tests produce lower P values for the same value of z. Be sure

that a one-tailed test is appropriate before citing one-tailed P values.
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Example 3.

Five hundred readings are made of span gas with known CO concentration

of 70 ppm, using a spectrophotometer.

(*) The average of the measurements is x = 70.1 with standard deviation

SD = 2.07.

Question: Does the machine need to be calibrated?

To answer, use the Gauss Model (for measurement error):

measured CO concentration = 70 ppm + bias + chance error

Box Model: The chance error behaves like random draws from a box with

average 0, unknown SD (and a distribution that is approximately normal).

• Null hypothesis: bias = 0. I.e., the spectrophotometer is properly

calibrated, the variation in the measured concentrations is due to chance

error. ⇒ The expected average of the measurements is 70 ppm.

• Alternative hypothesis: bias 6= 0. There is bias, but a priori we

don’t know the direction of the bias. (The spectrophotometer needs to

be calibrated.)
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Test statistic:

z =
observed average−H0-expected average

SE(average)
=

0.1

2.07/
√

500
≈ 1.08

Recall: SE ≈ (sample SD)/
√

sample size.

P-value: The test statistic follows the normal curve (approximately) and

the alternative hypothesis is two-sided, so p = area under normal curve

outside of (−1.08, 1.08) ≈ 28%.

(*) This is the probability of observing a test statistic as big as (or bigger

than) the observed value, assuming that the null hypothesis is true.

Conclusion: ‘Fail to reject H0’ — the spectrophotometer is good to go.

Reality check: 500 measurements? Really?

In a practical, real-world setting, many fewer measurements are usually

taken.
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Example 4.

Five readings are made of span gas with known CO concentration of 70

ppm, using a spectrophotometer.

The measurements were: 74, 73, 69, 76, 70.

Question: Does the machine need to be calibrated?

Following the Gauss Model (again):

measured CO concentration = 70 ppm + bias + chance error

Box Model: The chance error behaves like random draws from a box with

average 0, unknown SD (and a distribution that is approximately normal).

• Null hypothesis: bias = 0. I.e., the spectrophotometer is properly

calibrated, the variation in the measured concentrations is due to chance

error. ⇒ The expected average of the measurements is 70 ppm.

• Alternative hypothesis: bias 6= 0. There is bias, but a priori we

don’t know the direction of the bias. (The spectrophotometer needs to

be calibrated.)
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The test:

• Average = 72.4; SD ≈ 2.58.

• Test statistic:
72.4− 70

2.57/
√

5
≈ 2.08.

• P-value:

p = area


2.08-2.08

 ≈ 4%

• Conclusion: The probability that the difference between observed and

expected averages is due to chance error is low. Recalibrate?

Concern: The sample size is small!
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Problems:

• Problem 1. Sample size is small, so sample SD is likely to underes-

timate the SD of the ‘error box’.

⇒ This is true for all samples, but the difference is negligible when the

sample size is large.

• Solution 1. Use SD+ =

√
n

n− 1
×SD...

SD+ =
√

5/4× 2.57 ≈ 2.87.

• Problem 2. The test statistic

t =
observed− expected

SE
=

observed− expected

SD+/
√
n

does not follow the normal distribution...

• Solution 2. The test statistic does follow Student’s t-distribution with

n − 1 degrees of freedom... as long as the box of errors has a

normal distribution.
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• We find P-values for the t-distributions from a ‘t-table’.

• The t-table is read differently than the normal table:

– There is one row for every number of d.f.

– The columns correspond to specific P-values — they give the t-value

to the right of which the area under the t-curve is equal to the column

header.

Statistics, Fourth Edition
Copyright © 2007 W. W. Norton & Co., Inc.
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• The t-curves have the same general shape as the normal curve, but with

fatter tails ⇒ large values of |t| are more likely (bigger P-values), than

the same values of |z|.

• When the sample size (and so d.f.) is large, the difference between the

t-curve and the normal curve becomes small (and perhaps negligible).
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-4 -3 -2 -1 0 1 2 3 4

22 degrees of freedom
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Back to the example...

• t∗ =
72.4− 70

2.87/
√

5
≈ 1.87

• The P -value is estimated from the row in the t-table corresponding to

5− 1 = 4 degrees of freedom:

Statistics, Fourth Edition
Copyright © 2007 W. W. Norton & Co., Inc.

• t = 1.87 falls between the columns corresponding to (the one-sided

P-values) 10% and 5%.

• P-value: The probability that the difference between observed and

expected is due to chance error is between 10% and 20% (actually

p ≈ 13.5%), because this is a two-sided test.

• Conclusion: There is probably no need to recalibrate.
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Summary:

• If the sample size n is large enough, then

z =
observed average− box average

sample SD/
√
n

follows the normal curve reasonably well.

• If the original box follows the normal curve, then for any sample size

n > 1,

t =
observed average− box average

SD+/
√
n

follows the Student t-distribution, with n− 1 degrees of freedom.
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