
Linear Regression

(*) Given a set of paired data, {(x1, y1), (x2, y2), . . . , (xn, yn)}, we want

a method (formula) for predicting the (approximate) y-value of an

observation with a given x-value.

SD lin
e

(xj,yj)

dj

Problem: There are many observations with the same x-value but

different y-values... ⇒ Can’t predict one y-value from x.
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(*) More realistic goal: a method (formula) for predicting the (approxi-

mate) average y-value for all observations having the same x-value.

Notation:

• y(xj) = average y-value for all observations with x-value = xj .

• ŷj = estimated value of y(xj).

• We want a method for calculating ŷj from xj .

(*) We want the method (formula) to be linear — this means that there

is a specific line and the points (xj , ŷj) all lie on this line.

(*) First Guess: The SD-line.
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Question: How well does the SD-line approximate the averages y(xj)?

SD lin
e

(xj,yj)

0>εj

(xj , yj)

(xj , ŷj)

(xk , yk)

(xk , ŷk)

εk>0

jth residual: εj = yj - ŷj

SD lin
e

x

y

Not so well: The SD line is underestimating the averages to the left of

the point of averages and overestimating the averages to the right of the

point of averages.
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It may be easier to see the forest if we remove the trees...

SD lin
e

x-
y-

? ? ?

The average y-value for each x-value lies near the middle of the vertical

strip above that x. The further the vertical strip is from the point of

averages, the more the SD-line tends to miss the middle of the strip.
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SD lin
e

x-

y-

? ? ?

(*) Hypothetical (cloud of) data with graph of averages (red dots) and

the SD line. The further the vertical strip is from the point of averages,

the worse the SD line approximates the average height of the data in

that strip.
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SD lin
e

x-

y-

? ? ?

We want to find the line that

(i) Passes through the point of averages.

(ii) Approximates the graph of averages as well as possible.
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Question: What information is missing from the SD line?

Answer: The correlation between the variables!

(*) Taking correlation into account leads to the regression line.

• The regression line passes through the point of averages.

• The slope of the regression line (for y on x) is given by

rxy ·
SDy

SDx
.

• The regression line predicts that for every SDx change in the x-

value, there is an approximate (rxy · SDy) change in the average

value of the corresponding y-values.

Paired data and the relationship between the two variables (x and y) is

summarized by the five statistics:

x, SDx, y, SDy and rxy.
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Example. A large (hypothetical) study of the effect of smoking on the

cardiac health of men, involved 2709 men aged 25 - 45, and obtained the

following statistics,

x = 17, SDx = 8, y = 129, SDy = 7, rxy = 0.64,

where

(*) yj = systolic blood pressure measured in mmHg of the jth subject

(*) xj = number of cigarettes smoked per day by jth subject.

Question: What is the predicted average blood pressure of men in this

age group who smoke 20 cigarettes per day?

Answer: 20 cigarettes is 3 cigarettes above average, which is 3/8 · SDx

above average. The regression method predicts that the average blood

pressure of men who smoke 20 cigarettes/day will be

rx,y ×
(

3

8
· SDy

)
= 0.64×

(
3

8
· 7
)
≈ 1.68

mmHg above the overall average blood pressure — about 130.68 mmHg.
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Question: John is a 31-year old man who smokes 30 cigarettes a day.

What is John’s predicted blood pressure.

Answer: Our best guess for John is the average blood pressure of men

who smoke 30 cigarettes a day. Since 30 is 13 = 13/8 × SDx above x,

the regression method predicts that John’s blood pressure will be about

rx,y ×
(

13

8
· SDy

)
= 0.64×

(
13

8
· 7
)
≈ 7.28

mmHg above average — about 136.28 mmHg.

Question for later: What is the margin of error for this estimate?

Question: Kevin is a 53-year old man who doesn’t smoke. What is

Kevin’s predicted blood pressure?

Answer: The data from our (hypothetical) study shouldn’t be used to

predict Kevin’s blood pressure. His age falls outside the range of ages

for which the study was done.
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Students in a certain kindergarten class are given an IQ test in the fall

and then again in the Spring. Researchers want to know if the academic

program in this kindergarten helps boost the children’s IQ.

(*) The average on both tests is about 100 and both SD s are about 15,

so at first glance it seems that a year of kindergarten had no overall

effect.

(*) A closer look at the data finds shows that students with high scores

on the first test, tended to score lower (than their first score) on the

second test, on average. Also, students with lower scores on the first

test tended to improve on the second test.

(*) Why?

⇒ The regression effect.
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(*) Suppose that the relation between x and y is positive.

The regression effect is caused by the vertical spread of the data

around the SD line: if xj is one SDx above x, then yj will be greater

than y, but only by r×SDy on average. If xj is one SDx below x, then

yj will be less than y on average, but only by r × SDy.

SD lin
e

x-
y-

? ? ?
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The regression effect – a famous example.

Example: Heights of sons on heights of fathers.

average height of fathers ≈ 68 inches, SD ≈ 2.7 inches

average height of sons ≈ 69 inches, SD ≈ 2.7 inches r ≈ 0.5

Statistics, Fourth Edition
Copyright © 2007 W. W. Norton & Co., Inc.

Figure 5., p.171 in FPP, sons

and fathers’ heights, with SD

line and regression line.
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• The average heights of the sons for each height class of the fathers

follow the regression line, not the SD line.

• The average height of the sons grows more slowly than the height of

their fathers.

• Fathers that are much taller than 70 inches, will have sons that are,

on average, shorter than them.

• Fathers that are shorter than 70 inches will have sons that are, on

average, taller than them.

• The same logic applies, for example to of test-retest scenarios: higher

than average scores on the first test will be followed by somewhat

lower scores on the second test, on average. Likewise, lower than

average scores on the first test will be followed by somewhat better

scores on the second test, on average.

• The belief that the regression effect is anything more than a statis-

tical fact of life is the regression fallacy.
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The R.M.S. error of the regression

If we compare yj to the value ŷj predicted by the regression method,

then we will typically observe an error

εj = yj − ŷj .

These errors may be positive or negative and reflect the fact that the

data does not lie exactly on any straight line. SD lin
e

(xj,yj)

0>εj

(xj , yj)

(xj , ŷj)

Regression line

(xk , yk)

(xk , ŷk)

εk>0

jth residual: εj = yj - ŷj
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The square-root of the average of the squares of these errors,√√√√ 1

n

n∑
j=1

ε2j =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2

is called the R.M.S. error of the regression.

• The R.M.S. error of the regression is roughly the average vertical

distance of points in the scatterplot to the regression line.

• The R.M.S. error of regression is also called the standard error of

regression, or SER.

• The SER is to the regression line what the SD is to the average.

Most of the data in the scatter plot will be within one or two SER’s

from the regression line.
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Using the SER

When using the regression equation to predict an individual y-value from

an observed x-value, we can say that y is likely to be within one (or two)

SER(s) of ŷ(x).

Typically, we want to have actual numbers, so it is nice to know that

there is a shortcut for computing the SER:

SER =
√

1− r2xy · SDy.

Example: Returning to the ‘question for later’ In the Smoking-BP

example, we have r = 0.64 and SDy = 7, so

SER =
√

1− (0.64)2 · 7 ≈ 5.38.

I.e., in the case of the 31-year old man who smokes 30 cigarettes a day,

we can now say that his blood pressure is likely to be in the range

136.28± 5.38 mmHg.
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