
Using the SER

When using the regression equation to predict an individual y-value

from an observed x-value, we can say that y is likely to be within one

(or two) SER(s) of ŷ(x).

Typically, we want to have actual numbers, so it is nice to know that

there is a shortcut for computing the SER:

SER =
√

1− r2xy · SDy.

Example. A large (hypothetical) study of the effect of smoking on the

cardiac health of men, involved 2709 men aged 25 - 45, and obtained

the following statistics,

x = 17, SDx = 8, y = 129, SDy = 7, rxy = 0.64,

The SER (for predicting BP from cigarette consumption) is

SER =
√

1− (0.64)2 · 7 ≈ 5.38.
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Question: John is a 31-year old man who smokes 30 cigarettes a day.

What is John’s predicted blood pressure.

Answer: Our best guess for John is the average blood pressure of

men who smoke 30 cigarettes a day. Since 30 is 13 = 13/8 ·SDx above

x, the regression method predicts that John’s blood pressure will be

about

rx,y ·
(

13

8
· SDy

)
= 0.64 ·

(
13

8
· 7
)
≈ 7.28

mmHg above average — about 136.28 mmHg.

Now we can also add a margin of error, namely the SER, so we can

say that John’s blood pressure is likely to be in the range

136.28± 5.38 mmHg.
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From the regression method...

Given a set of paired data {(x1, y1), . . . , (xn, yn)} with sum-

mary statistics

x, SDx, y, SDy and rxy

and if xi is k ·SDx above (or below) x, then the average of all

the y-values corresponding to xi is approximately rxy · k · SDy

above (or below) y.

If ŷ(xi) is the estimate for the average of all the y-values corresponding

to x = xi, then the regression method says that

ŷ(xi)− y = rxy ·
(
xi − x
SDx

)
· SDy

or

ŷ(xi) = y+rxy·
(
xi − x
SDx

)
·SDy =

(
r · SDy

SDx

)
·xi+

(
y −

(
r · SDy

SDx

)
· x
)
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... to the regression equation. Renaming things, we can write

ŷ(xi) = β0 + β1xi

• β1 =
rxy · SDy

SDx
is the slope of the regression line.

• β0 = y − β1x, is the y-intercept of the regression line.

Example: A study of education and income is done for men age 30 -

35. A representative sample of 2317 men in this age group is surveyed,

and the following statistics are collected:

E = 13 SDE = 1.5

I = 46 SDI = 10 rI,E = 0.45

where E = years of education and I = annual income, in $1000s.

(*) Reg coeff.s: β1 = 0.45 · (10/1.5) = 3 and β0 = 46− 3 · 13 = 7.

(*) Regression equation:

Î = 7 + 3E.
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(*) A 32-year old man is observed, our best guess for his income is ...

(*) A 32-year old man is observed, our best guess for his income is ...

the average income for all men in this age group, I = 46.

(*) More informatively: his income is likely to fall in the range

I ± SDI = 46± 10.

(*) A 32-year old man with 16 years of education is observed, our

best guess for his income is ... the average income of all men in this

age group with 16 years of education, which we estimate using the

regression equation:

I(16) ≈ Î(16) = 7 + 3 · 16 = 55.

(*) The R.M.S. error of regression in this case is
√

1− 0.452 ·10 ≈ 8.93,

so we can therefore predict the income of the 32 year old with 16 years

of school (more informatively) as

55± 8.93
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Comments:

(*) When computing the regression coefficients and the SER of the

regression of x on y,

x̂ = γ0 + γ1y,

the roles of SDy, SDx, x and y all switch, but rxy plays the same role:

γ1 =
rxy · SDx

SDy
, γ0 = x− γ1y and SER =

√
1− r2xy · SDx.

Example: Regression for predicting educational level from income:

γ1 = 0.45 · 1.5

10
= 0.0675 and γ0 = 13− 0.0675 · 46 ≈ 9.9.

=⇒ Ê = 9.9 + 0.0675I

and the SER for predicting education from income is

SER =
√

1− (0.45)2 · 1.5 ≈ 1.34.
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Comments:

(*) By using the (same) SER to estimate the spread around ŷ(x) for

all the (different) x-values, we are making a fairly strong assumption

— we are assuming that the spread in each vertical column through

the scatterplot is about the same. If this is true, then the data is said

to be homoscedastic. Data that is not homoscedastic is said to be

heteroscedastic.

(*) There are statistical procedures used to test for heteroscedasticity,

but we can also use common sense.

⇒ For example, data for education and income is likely to be (quite)

heteroscedastic — the more education an individual has the bigger the

range of possible incomes.

⇒ On the other hand, the data for heights of sons and heights of

fathers can be expected to be (approximately) homoscedastic — the

factors that result in variations in sons heights for fathers of the same

height are likely to be very similar across all (fathers’) heights.
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(*) Another assumption that is commonly made is that of normality —

that the y-values in each individual vertical strip are (approximately)

normally distributed.

Example. Heights of sons on heights of fathers.

F = 68 SDF = 2.7 S = 69 SDS = 2.7 r = 0.5

Statistics, Fourth Edition
Copyright © 2007 W. W. Norton & Co., Inc.

Figure 5., p.171 in FPP, sons

and fathers’ heights, with SD

line and regression line.
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The regression coefficients for predicting sons’ heights from fathers’

heights are

β1 = 0.5 · 2.7

2.7
= 0.5 and β0 = 69− 0.5 · 68 = 35,

so the regression equation for predicting sons’ heights from fathers’

heights is Ŝ = 35 + 0.5F and the SER for this regression is

SER =
√

1− (0.5)2 · 2.7 ≈ 2.34.

Example. The average height of men whose fathers were 72 inches

tall is predicted to be about Ŝ = 35 + 0.5 · 72 = 71 inches. Assuming

normality and using the SER as a proxy for the SD of the height

distribution of these men, we can say that roughly 68% of the men

whose fathers are 72 inches tall will have heights in the range

71± 2.34 inches

(average ±1 SD).
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Least-squares line of ‘best fit’.

We introduced the R.M.S error of regression√√√√ 1

n

n∑
j=1

(yj − ŷj)2 (=
√

1− r2 · SDy)

to quantify the vertical spread of the data in a scatter-plot around the

regression line. In this formula, ŷj is the y-coordinate of the point on

the regression line with the same x-coordinate as the point (xj , yj) in

the data.

We can quantify the vertical spread of the data around the SD-line in

the same way, and there is a similar shortcut formula:√√√√ 1

n

n∑
j=1

(yj − ỹj)2
(

=
√

2− 2|r| · SDy

)
.

In this case, ỹj is the y-coordinate of the point on the SD-line with

the same x-coordinate as the point (xj , yj) in the data.
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Observation:

(2− 2|r|)− (1− r2) = r2 − 2|r|+ 1 = |r|2 − 2|r|+ 1 = (|r| − 1)2 ≥ 0,

so

2− 2|r| ≥ 1− r2,

and this means that√
2− 2|r| · SDy ≥

√
1− r2 · SDy,

This means that the vertical spread around the regression line is

smaller than the vertical spread around the SD-line. I.e., the regression

line does a better job (on average) than the SD-line of predicting y

values from given x values.

In fact, in this sense, the regression line is better than any other

straight line.
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Specifically, given a set of paired data {(x1, yy), (x2, y2), . . . , (xn, yn)},
then for any line, with equation y = ax + b say, we can calculate a

R.M.S. error,

R.M.S. error for the line y = ax+ b =

√√√√ 1

n

n∑
j=1

(yj − (axj + b))2,

to measure the vertical spread of the data around this line.

Fundamental fact: The regression-line is the line for which the

R.M.S error is the smallest possible:√√√√ 1

n

n∑
j=1

(yj − (axj + b))2 ≥

√√√√ 1

n

n∑
j=1

(yj − ŷj)2

for any line y = ax + b. For this reason, the regression line is also

called the least-squares line of best fit.
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