Example. If 4 tickets are drawn with replacement from

$$
\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 2 & 4 \\
\hline
\end{array}
$$

what are the chances that we observe exactly two 2 s?
$\Rightarrow \quad$ 'Exactly $t w o$ ' 2 s in a sequence of four draws can occur in many ways.
For example, $(\sqrt{2}-*-*-\sqrt{2}),(\sqrt{2}-\sqrt{2}-*-\sqrt{*})$,
($2-*-2-*$), and so on. (where $*$ means not 2).

Two key observations:

(i) All these different sequences are mutually exclusive of each other...

If we observe the sequence $(\boxed{2}-*-2$ - $-*)$, then we do not observe the sequence $(2-*-*-2)$.
(ii) The probability of observing each of these individual sequences is the same for all of them, because multiplication is commutative, i.e.,

$$
\frac{2}{5} \cdot \frac{3}{5} \cdot \frac{3}{5} \cdot \frac{2}{5}=\frac{2}{5} \cdot \frac{2}{5} \cdot \frac{3}{5} \cdot \frac{3}{5}=\frac{2}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{3}{5}=\cdots=5.76 \%
$$

This means that

$$
\begin{aligned}
P\left(\text { exactly two } \begin{array}{|c}
2 \\
\mathrm{~s} \text { in four draws })
\end{array}\right. & =\overbrace{5.76 \%+5.76 \%+5.76 \%+\cdots+5.76 \%}^{N=\text { number of sequences with two } \boxed{2} \mathrm{~s}} \\
& =N \times 5.76 \%
\end{aligned}
$$

Now we have to figure out what N is...
Observations.
(i) We don't care which tickets go in the 'not 2 ' spots.
(ii) Since we are listing all of the possible $2-2$ sequences, we can be methodical.
(iii) When listing different $2-\sqrt{2}$ sequences, all we have to decide is where in each sequence to put the $2 \mathrm{~s} \Longrightarrow$ the 'not 2 's will go in the other spots. $\Rightarrow \quad$ The number of different sequences with two $\boxed{2}$ s is equal to the number of ways to choose two positions in a sequence of four.
\Rightarrow There are 4 positions in which we can place the first 2 , and for each choice of first position, there are 3 ways to choose the second position...
So it seems that there are $4 \cdot 3=12$ ways to place two 2 s in a sequence of four draws...

But we are overcounting, because each pair of positions has been counted twice! For example, the choices 'first $\boxed{2}$ in the third position and second $\boxed{2}$ in the first position' and 'first $\boxed{2}$ in the first position and second $\boxed{2}$ in the third position' result in the same pair of positions - first and third.
Conclusion: The number of sequences with exactly two 2 s is

$$
N=\frac{4 \cdot 3}{2}=6
$$

So

$$
P(\text { exactly two } 2 \mathrm{~s} \text { in four draws })=6 \times 5.76 \%=34.56 \%
$$

More general question: If n tickets are drawn at random with replacement from the box

$$
\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 2 & 4 & 6 \\
\hline
\end{array},
$$

what are the chances that exactly k of them will be 2 s ?
The reasoning that we used when $n=4$ and $k=2$ can be used to answer this question too.
(*) The results of different draws are independent.
${ }^{*}$) The probability of a 2 on any one draw is $2 / 5$.
$\left(^{*}\right)$ The probability of a $\boxed{*}($ not $\boxed{2})$ on any one draw is $3 / 5$.

Observation 1.
The probability of any particular sequence of n draws which results in $k 2 \mathrm{~s}$ and $(n-k) *$ *

$$
\begin{aligned}
& k \sqrt{2} s \text { and }(n-k) * s \\
& \overbrace{* *}^{*} 2 * 2 \cdots * * 2 *
\end{aligned}
$$

is equal to

$$
\overbrace{\frac{3}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdots \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{3}{5}}^{k(2 / 5) s \text { and }(n-k)(3 / 5) s}=\left(\frac{2}{5}\right)^{k} \cdot\left(\frac{3}{5}\right)^{n-k}
$$

regardless of the order in which the tickets appear!

Observation 2.

Different sequences of $k \boxed{2} \mathrm{~s}$ and $(n-k){ }^{*}$ s (i.e., sequences that differ in at least one position (actually, at least two)) are mutually exclusive.

This means that we can use the addition rule to conclude that

$$
\left.\begin{array}{rl}
P & \text { (exactly } k \boxed{2} s \text { in } n \text { draws) } \\
& =\overbrace{\left(\frac{2}{5}\right)^{k} \cdot\left(\frac{3}{5}\right)^{n-k}+\left(\frac{2}{5}\right)^{k} \cdot\left(\frac{3}{5}\right)^{n-k}+\cdots+\left(\frac{2}{5}\right)^{k} \cdot\left(\frac{3}{5}\right)^{n-k}}^{\# \text { of different sequences with exactly } k} \boxed{2} \mathrm{~s} \text { and }(n-k) \overbrace{*} \mathrm{~s}
\end{array}\right) .
$$

$N=$ number of different sequences with exactly $k \boxed{2}$ and $(n-k) * *$.

Next question: What is N ?
I.e., how many sequences of draws are there with $k 2 \mathrm{~s}$ and $(n-k) \sqrt{*}$?
${ }^{(*)}$ We only need to count the number of ways of choosing k positions for the 2 s among the n available positions.

$$
\begin{aligned}
& n \text { positions and } k \boxed{2} s \\
& \overbrace{* *}^{* *} 2 \pi \cdots * * 2 \text { * }
\end{aligned}
$$

- There are $n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)$ different ways that we can place the 2 s if the order matters: first 2, second 2, etc.
- But we don't care about the order in which the positions were chosen, so the number above is too big - we are counting each of the possible sequences too many times.
- Every unordered set of k positions of the 2 s appears

$$
k!=k \cdot(k-1) \cdots 2 \cdot 1
$$

different times in the collection of ordered sets we counted above.

Observation 3.

The number of sequences of n draws that result in $k 2 \mathrm{~s}$ and $(n-k) * \mathrm{~s}$ is

$$
N=\frac{n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)}{k!}=\frac{n!}{(n-k)!\cdot k!}=\binom{n}{k} .
$$

Comment: $\binom{n}{k}$ is one of the standard ways of denoting this number. Another standard notation for this is ${ }_{n} C_{k}$.

Conclusion.

If n tickets are drawn at random with replacement from the box

$$
\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 2 & 4 & 6 \\
\hline
\end{array},
$$

the probability of observing exactly $k \boxed{2} \mathrm{~s}$ is

$$
P(\text { exactly } k \boxed{2} s \text { in } n \text { draws })=\binom{n}{k} \cdot\left(\frac{2}{5}\right)^{k} \cdot\left(\frac{3}{5}\right)^{n-k} .
$$

Comments:

- ($\binom{n}{k}$ is pronounced ' \boldsymbol{n} choose \boldsymbol{k} ', and is also called a binomial coefficient. It is the number of different (unordered) subsets of size k that can be chosen from a set of n objects.
- $\binom{n}{0}=1$ by definition.
- $\binom{n}{k}=\binom{n}{n-k}$.
- The binomial coefficients grow large quickly. For example,

$$
\binom{10}{3}=120,\binom{10}{5}=252,\binom{20}{3}=1140,\binom{20}{5}=15504
$$

and

$$
\binom{100}{30}=29372339821610944823963760
$$

- The numbers $\binom{n}{k}$ are called binomial coefficients because they appear in the binomial formula

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\cdots+\binom{n}{k} a^{n-k} b^{k}+\cdots+\binom{n}{n} b^{n}
$$

The general case.

Suppose a box contains N tickets: 1 s and 0 s . And suppose that the probability of (randomly) drawing a $\boxed{1}$ from the box is $P(\boxed{1})=p$.
$\Rightarrow \quad$ The number of 1 s in the box is $p \cdot N$.
$\Rightarrow \quad$ The probability of drawing a 0 is $1-p$.
If n tickets are drawn at random with replacement from such a box, then the probability of observing exactly $k \boxed{\square} s($ and $(n-k) \square s)$ is

$$
P(\text { exactly } k \boxed{1} \mathrm{~s} \text { in } n \text { draws })=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Observation. For this question, the number N of tickets in the box is not important. What matters is the proportion p of 1 s in the box.

Coin tosses.
If we have a box with one \square and one \square, then the number of $\square \mathrm{s}$ in n random draws with replacement from this box can be used to model the number of heads in n tosses of a fair coin.
(*) The probability of observing k heads in n tosses of a fair coin is

$$
P(k \text { heads in } n \text { tosses })=\binom{n}{k} \cdot\left(\frac{1}{2}\right)^{k} \cdot\left(\frac{1}{2}\right)^{n-k}=\binom{n}{k} \cdot\left(\frac{1}{2}\right)^{n} .
$$

${ }^{(*)}$ Given a particular n, there are $n+1$ possible values for k (i.e., $0,1,2, \ldots, n)$ and the probabilities for each of these values can be displayed in a probability histogram.
\Rightarrow The values of k are arranged on the horizontal axis and we use the density scale on the vertical axis: the area of the bar above each value k gives the probability of observing exactly k heads in n tosses.

Probability histogram for the number of heads in 10 tosses of a fair coin.

We can 'read' this histogram the same way that we do a histogram for data...
$\left.{ }^{*}\right)$ What is the probability of observing more than 7 heads in 10 tosses?
\Rightarrow More than 7 heads in 10 tosses means 8 heads, 9 heads or 10 heads, and these are all mutually exclusive events. So...

$$
\begin{aligned}
& P(\text { more than } 7 \text { heads in } 10 \text { tosses }) \\
& \quad=P(8 \text { heads })+P(9 \text { heads })+P(10 \text { heads }) \\
& \quad=\text { area under histogram from } 7.5 \text { to } 10.5 \\
& \quad \approx 4.39 \%+0.98 \%+0.098 \% \approx 5.47 \%
\end{aligned}
$$

(*) What is the probability of observing between 4 and 6 heads in 10 tosses?
$\Rightarrow P$ (between 4 and 6 heads in 10 tosses)
$=P(4$ heads $)+P(5$ heads $)+P(6$ heads $)$
$=$ area under histogram from 3.5 to 6.5
$\approx 20.51 \%+24.61 \%+20.51 \%=65.63 \%$

A hint of things to come...

... But first, more examples.

Example. 8 tickets are drawn at random with replacement from a box containing 8 tickets $-6 \boxed{1} \mathrm{~s}$ and 20 s .
What is the probability that we will observe between 5 and 7 s?
We can calculate the probability using (the addition rule and) the formula for binomial probabilities:

$$
\begin{aligned}
P(\text { between } 5 \text { and } 7 \boxed{1} \mathrm{~s})= & P(5 \boxed{1} s)+P(6 \boxed{1} s)+P(7 \boxed{1} s) \\
= & \binom{8}{5} \cdot\left(\frac{3}{4}\right)^{5} \cdot\left(\frac{1}{4}\right)^{3}+\binom{8}{6} \cdot\left(\frac{3}{4}\right)^{6} \cdot\left(\frac{1}{4}\right)^{2} \\
& +\binom{8}{7} \cdot\left(\frac{3}{4}\right)^{7} \cdot\left(\frac{1}{4}\right)^{1} \\
= & 56 \cdot \frac{3^{5}}{4^{8}}+28 \cdot \frac{3^{6}}{4^{8}}+8 \cdot \frac{3^{7}}{4^{8}} \\
= & \frac{51516}{65536} \approx 0.786=78.6 \%
\end{aligned}
$$

$\left(^{*}\right)$ We can use a probability histogram in this case too:

$P($ between 5 and $7 \boxed{1} \mathrm{~s})=$ area of histogram between 4.5 and 7.5

$$
\approx 0.21+0.31+0.27=0.79
$$

Question: What changes when the number of draws increases?
(*) 80 tickets are drawn at random with replacement from the same box.
\Rightarrow What is the probability that we will observe between 55 and $65 \boxed{1}$ s?
\Rightarrow We can give a precise answer using the binomial formula:

$$
\begin{aligned}
& P(\text { between } 55 \text { and } 65 \boxed{1} \text { s in } 80 \text { draws) } \\
& \qquad\binom{80}{55} \cdot\left(\frac{3}{4}\right)^{55} \cdot\left(\frac{1}{4}\right)^{25}+\binom{80}{56} \cdot\left(\frac{3}{4}\right)^{56} \cdot\left(\frac{1}{4}\right)^{24}+\cdots \\
& \cdots+\binom{80}{65} \cdot\left(\frac{3}{4}\right)^{65} \cdot\left(\frac{1}{4}\right)^{15}=\ldots ?
\end{aligned}
$$

These days, evaluating expressions like this directly is easy with computers. For example, we can use on-line calculators like the one found here:
http://stattrek.com/online-calculator/binomial.aspx

Answer: $\approx 84.6 \%$.

What about using a probability histogram for the number of 1 s observed in 80 random draws (with replacement) from the same box..?

$\left.{ }^{*}\right)$ Kind of hard to read.
$\left.{ }^{*}\right)$ Also - we have to calculate all the probabilities to draw the histogram!
'Zooming in' to the part of the histogram where $40 \leq$ number of 1 s ≤ 80 :

${ }^{(*)}$ This part of the histogram accounts for more than 99.9999% of the total.
(*) I.e., P (fewer than $40 \square$ s in 80 draws) $<0.0001 \%$.

Another hint at things to come...

