Example. If 4 tickets are drawn with replacement from
[1[2][2][4][6]],

what are the chances that we observe exactly two |2 |s?

= ‘Fractly two’| 2 |s in a sequence of four draws can occur in many ways.

For example, (|2|-[*|-[x|-[2]), (|2|-]2]-|*|-[x*]),

(12]-|*]-[2]|-]*|), and so on. (where | not 2

Two key observations:

(i) All these different sequences are mutually exclusive of each other...

If we observe the sequence (|2 |- [*|-[2]|-|*|), then we do not observe the

sequence (|2 [-|x*|-[x|-]2].

(ii) The probability of observing each of these individual sequences is the

same for all of them, because multiplication is commutative, i.e.,




This means that

N = number of sequences with two | 2 |s

P(exactly two | 2]s in four draws) = 5.76% + 5.76% + 5.76% + - - - + 5.76%
= N x 5.76%

Now we have to figure out what IV is...

Observations.

(i) We don’t care which tickets go in the ‘not | 2| spots.

(ii) Since we are listing all of the possible 2-2| sequences, we can be

methodical.

(iii) When listing different 2- 2 | sequences, all we have to decide is where in

each sequence to put the |2 |s = the ‘not |2|s will go in the other spots.

= The number of different sequences with two |2 |s is equal to the number

of ways to choose two positions in a sequence of four.




= There are 4 positions in which we can place the first | 2|, and for each

choice of first position, there are 3 ways to choose the second position...

So it seems that there are 4 - 3 = 12 ways to place two | 2 |s in a sequence of

four draws...

But we are overcounting, because each pair of positions has been counted

twice! For example, the choices ‘first |2 | in the third position and second |2

wn the first position” and ‘first | 2 | in the first position and second |2 | in the

third position’ result in the same pair of positions — first and third.

Conclusion: The number of sequences with exactly two | 2 |s is

4-3

N=—"=6
2

P(exactly two | 2 |s in four draws) = 6 x 5.76% = 34.56%.




More general question: If n tickets are drawn at random with replacement
from the box

Y

L{|2]]2(|4]|6

what are the chances that exactly k of them will be | 2 |s7

The reasoning that we used when n = 4 and £ = 2 can be used to answer

this question too.

(*) The results of different draws are independent.

(*) The probability of a | 2| on any one draw is 2/5.

(*) The probability of a | x (not 2 ) on any one draw is 3/5.




Observation 1.

The probability of any particular sequence of n draws which results in £
and (n — k) |*|s

s and (n—k)

N\

x || 2

is equal to

k (2/5)s andj\(n—k) (3/5) s
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regardless of the order in which the tickets appear!




Observation 2.

Different sequences of k£ |2|s and (n — k) | * |s (i.e., sequences that differ in

at least one position (actually, at least two)) are mutually exclusive.

This means that we can use the addition rule to conclude that

P(exactly k|2 |s in n draws)

# of different sequences with exactly k sand (n — k) | * |s

N\
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N = number of different sequences with exactly k|2 |s and (n — k)




Next question: What is N7

I.e., how many sequences of draws are there with k|2 s and (n — k) | * [s?

(*) We only need to count the number of ways of choosing k positions for

the | 2 |s among the n available positions.

n positions and k

7\
r N\

k([ [ 2% [|2] - [%]|]2]]*

e There aren-(n—1)-(n—2)---(n — k + 1) different ways that we can

place the | 2 |s if the order matters: first | 2|, second | 2 |, etc.

e But we don’t care about the order in which the positions were chosen,
so the number above is too big — we are counting each of the possible
sequences too many times.

e Every unordered set of k positions of the | 2 |s appears

K=k -(k—1)---2-1

different times in the collection of ordered sets we counted above.




Observation 3.

The number of sequences of n draws that result in k|2 |s and (n — k)

- n-n-1)-(n—-2)---(n—k+1) n! _(n
N = k! _(n—k)!-k!_(k)

Comment: (Z) is one of the standard ways of denoting this number.

Another standard notation for this is ,,C}.

Conclusion.

If n tickets are drawn at random with replacement from the box

[1]2][2][4][6]].

the probability of observing exactly k| 2 |s is

n

k

P(exactly k|2 |s in n draws) = (




Comments:

o (Z) is pronounced ‘n choose k', and is also called a binomzal coefficient.
It is the number of different (unordered) subsets of size k that can be
chosen from a set of n objects.

(5) = 1 by definition.

(k) = (20):

The binomial coefficients grow large quickly. For example,

10 10 20 20
— 12 — 252 — 114 — 15504
(2) =120 (5) =2 () = )

1
( 3000) = 29372339821610944823963760

The numbers (Z) are called binomaal coefficients because they appear

in the binomzial formula

n n n n n—1 n n—kik n n
(a+b)" = <O>a +(1)a b+ —I—(k>a b" + —|—<n>b.




The general case.

Suppose a box contains N tickets: |[1]s and |o|s. And suppose that the

probability of (randomly) drawing a [ 1| from the box is P([1]) = p.

=  The number of | 1|s in the box is p - N.

=  The probability of drawing a |o| is 1 — p.

If n tickets are drawn at random with replacement from such a box, then the

probability of observing exactly k [ 1]s (and (n — k) [0]s) is

P(exactly k [1]s in n draws) = (Z)pk(l —p)"k,

Observation. For this question, the number N of tickets in the box is not

important. What matters is the proportion p of |1 |s in the box.




Coiln tosses.

If we have a box with one |1| and one |o]|, then the number of |:|s in n

random draws with replacement from this box can be used to model the

number of heads in n tosses of a fair coin.

(*) The probability of observing k heads in n tosses of a fair coin is

P(k heads in n tosses) = (Z) - (;)k (;)nk - (Z) - (%)n

(*) Given a particular n, there are n + 1 possible values for k (i.e.,
0,1,2,...,n) and the probabilities for each of these values can be displayed
in a probability histogram.

= The values of k are arranged on the horizontal axis and we use the
density scale on the vertical axis: the area of the bar above each
value k gives the probability of observing exactly k heads in n

tosses.
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Probability histogram for the number of heads in 10 tosses of a fair coin.




We can ‘read’ this histogram the same way that we do a histogram for data...
(*) What is the probability of observing more than 7 heads in 10 tosses?

=  More than 7 heads in 10 tosses means 8 heads, 9 heads or 10 heads,
and these are all mutually exclusive events. So...

P(more than 7 heads in 10 tosses)
= P(8 heads) + P(9 heads) + P(10 heads)

— area under histogram from 7.5 to 10.5

~ 4.39% + 0.98% + 0.098% ~ 5.47%

(*) What is the probability of observing between 4 and 6 heads in 10 tosses?

= P(between 4 and 6 heads in 10 tosses)
= P(4 heads) + P(5 heads) + P(6 heads)
= area under histogram from 3.5 to 6.5

~ 20.51% + 24.61% + 20.51% = 65.63%




A hint of things to come...
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... But first, more examples.




Example. 8 tickets are drawn at random with replacement from a box

containing 8 tickets — 6 |1 |s and 2|0 |s.

What is the probability that we will observe between 5 and 7|1 |s?

We can calculate the probability using (the addition rule and) the formula

for binomial probabilities:

P (between band 7|1 |s —|— (6 S

)5 (i)« 2)
()

8 3\" /1Y
7 4
35 6 37
= H6 - 5 + 28 - 4—8 + 8- ]
51516

= oreae ~ 0.786 = 78.6%




(*) We can use a probability histogram in this case too:

0.35

P (between 5and 7 S) — area of histogram between 4.5 and 7.5

~ 0.21 +0.31 4 0.27 = 0.79




Question: What changes when the number of draws increases?

(*) 80 tickets are drawn at random with replacement from the same box.

= What is the probability that we will observe between 55 and 65 |1 |s?

= We can give a precise answer using the binomial formula:

P ( between 55 and 65 |1 [s in 80 draws)

-(3) 0 ()06

SIHRORE

These days, evaluating expressions like this directly is easy with computers.
For example, we can use on-line calculators like the one found here:

http:/ /stattrek.com/online-calculator/binomial. aspx

Answer: ~ 84.6%.




What about using a probability histogram for the number of | 1 |s observed

in 80 random draws (with replacement) from the same box..?
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(*) Kind of hard to read.

(*) Also - we have to calculate all the probabilities to draw the histogram!




‘Zooming in’ to the part of the histogram where 40 < number of

40 45 50 55 60 65 70 75 a0

(*) This part of the histogram accounts for more than 99.9999% of the total.

(*) Le., P(fewer than 40 [1]s in 80 draws) < 0.0001%.




Another hint at things to come...




