Chapter 6, Review Problem 4: You would expect to get 36 inches give or take the SD of the first three measurements, and the SD is approximately 0.03 inches.
Details: The average of the first three measurements is $(35.96+36.01+36.03) / 3=36$, so the $S D$ of these measurements is

$$
\sqrt{\frac{(0.04)^{2}+(0.01)^{2}+(0.03)^{2}}{3}}=0.0294 \ldots \approx 0.03
$$

Chapter 6, Special Review Problem 14:

Moving high-risk women from the control group to the treatment group would result in a higher death rate in the treatment group and lower death rate in the control group. This would bias the study against the treatment - making it appear that the screening was not effective in lowering the death rate.

Chapter 13, Review problem 8: First,

$$
\begin{aligned}
P(\text { roll shows } 3 \text { or more spots }) & =P(3 \text { spots })+P(4 \text { spots })+P(5 \text { spots })+P(6 \text { spots }) \\
& =\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{2}{3} .
\end{aligned}
$$

(a) Since the rolls are independent,

$$
P(\text { all four rolls show } 3 \text { or more spots })=\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}=\frac{16}{81} .
$$

(b) $P($ roll does not show 3 or more spots $)=1-\frac{2}{3}=\frac{1}{3}$, so

$$
P(\text { none of the four rolls show } 3 \text { or more spots })=\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}=\frac{1}{81} .
$$

(c) 'Not all the rolls show 3 or more spots' is the complement of 'all the rolls show 3 or more spots', so
$P($ not all of the four rolls show 3 or more spots $)=1-P$ (all three rolls show 3 or more spots)

$$
=1-\frac{16}{81}=\frac{65}{81} .
$$

Chapter 14, Review problem 9:

(a) $P(A>B)=\frac{3}{12}=25 \%$.
(b) $P(A=B)=\frac{3}{12}=25 \%$.
(c) $P(A<B)=\frac{6}{12}=50 \%$.

Details: There are 12 possible pairs, (\boxed{A}, \boxed{B}), as listed below:

$$
\begin{aligned}
& (\boxed{1}, \boxed{1}),(\boxed{1}, \sqrt[2]{2}),(\boxed{1}, \boxed{3}),(\boxed{1}, \boxed{4}),(\boxed{2}, \boxed{1}),(\boxed{2}, \boxed{2}), \\
& (\boxed{2}, \boxed{3}),(\boxed{2}, \sqrt[4]{4}),(\boxed{3}, \boxed{1}),(\boxed{3}, \boxed{2}),(\boxed{3}, \sqrt[3]{)}),(\boxed{3}, \boxed{4}),
\end{aligned}
$$

and each pair has a chance of $\frac{1}{3} \cdot \frac{1}{4}=\frac{1}{12}$ of being drawn, since the draws from the two boxes are independent.
(*) Three of the pairs entail $A>B$, so $P(A>B)=\frac{3}{12}$.
(*) Three of the pairs entail $A=B$, so $P(A=B)=\frac{3}{12}$.
(*) Six of the pairs entail $A<B$, so $P(A<B)=\frac{6}{12}$.

Chapter 14, Review problem 11:

(a) Use the multiplication rule:

$$
P(\text { all three cards are diamonds })=\frac{13}{52} \cdot \frac{12}{51} \cdot \frac{11}{50}=\frac{1716}{132600} \approx 1.29 \%
$$

(b) Multiplication rule again:

$$
P(\text { none of the three cards are diamonds })=\frac{39}{52} \cdot \frac{38}{51} \cdot \frac{37}{50}=\frac{54834}{132600} \approx 41.35 \%
$$

(c) The event 'the cards are not all diamonds' is the complement of the event 'all the cards are diamonds', so

$$
P(\text { the cards are not all diamonds })=100 \%-\overbrace{P(\text { all three cards are diamonds })}^{\approx 1.29 \% \text { from (a) }} \approx 98.71 \%
$$

Chapter 14, Review problem 14: Both people have the same chance of winning, since they each have two different tickets.

Details: To win this game, you have to match the six numbers that are selected from the box. There are

$$
\binom{53}{6}=22,957,480
$$

possible combinations of six numbers, so each individual ticket has a chance of

$$
\frac{1}{22,957,480} \approx 0.0000044 \%
$$

to win. Different combinations are mutually exclusive, so if you have two different tickets (even if they only differ in one number) your chance of winning is approximately 0.0000088%.

